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Markov modelling and stochastic identi¯cation
for nonlinear ship rolling in random waves

By J. B. Roberts a n d M. Vasta

School of Engineering and Information Technology, University of Sussex,
Falmer, Brighton, East Sussex BN1 9QT, UK

A physically based averaging procedure is applied to a stochastic nonlinear single-
degree-of-freedom equation for ship rolling, leading to a one-dimensional continuous
Markov model for the energy envelope of the roll motion. It is shown that this
model enables various statistics of the roll response to be estimated, including its
stationary distribution and the mean time for the energy to reach a critical level.
Moreover, it is demonstrated that the Markov model can be used as the basis of a
new stochastic identi­ cation technique for estimating the spectrum of the excitation,
and the nonlinear damping moment, from measurements of the roll response alone.

Keywords: ship rolling; nonlinear; stochastic; identi¯cation; damping

1. Introduction

Large roll motions are a serious threat to the safety of a ship and those on board.
They may cause excessive loads on sea fastenings, shifting of cargo, shipping of water,
loss of men and deck equipment overboard and possibly loss of control of the ship.
These factors may contribute to capsize, or to structural failure. An ability to model
the rolling motion of a ship in irregular waves is thus a matter of great practical
importance. Roll models can be used to predict the motion of a ship in a given
sea state. They can also be used in conjunction with roll motion measurements to
estimate unknown quantities, such as the damping moment.

Rolling motion is nonlinear in nature and is generally coupled with other motions,
such as sway, pitch and heave (see, for example, Nayfeh et al . 1973; Thompson et
al . 1992; Mulk & Falzarano 1994). However, in two special cases it is reasonable to
consider this motion as uncoupled and thus governed by a single-degree-of-freedom
(SDOF) equation. The ­ rst of these is the case of a ship at low speed in unidirectional
beam waves. Here, roll is principally coupled with sway and can be uncoupled, to a
good approximation, provided that the coordinate origin is located at an appropriate
`roll centre’ (Roberts & Dacunha 1985). The second is the case of a ship rolling in
unidirectional head waves: in this situation, parametric excitation can lead to loss of
stability (Roberts 1982b).

In this paper attention is focused on the ­ rst of these cases|ship rolling in beam
seas. Studies of this problem were initiated by Froude (1861): he obtained an SDOF
equation of motion incorporating nonlinear damping and restoring moment terms
and from this was able to compute the roll response to regular sinusoidal waves.
Subsequent studies of this kind, both analytical and computational, have been made
by many workers and a variety of interesting nonlinear phenomena has been observed.
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These include the presence of ultraharmonics and subharmonics (Cardo et al . 1981;
Cardo & Trincas 1987; Peyton Jones & Cankaya 1996) and chaotic motion (Virgin
1987; Thompson et al . 1990, 1992). Capsize criteria based on transient response to
regular waves (MacMaster & Thompson 1994; Rainey & Thompson 1991; Soliman
& Thompson 1991) and on the total energy (Virgin & Erikson 1994) have been
proposed.

To complement these deterministic studies, it is important to recognize the random
nature of ocean waves and to model both the wave excitation and the response as
stochastic processes. Stochastic process theory was ­ rst introduced into ship motion
studies by St Denis & Pierson (1953), but progress in solving the ship-rolling problem
has been slow, due to the unavailability of suitable general methods of dealing with
nonlinear systems driven by stochastic processes. E¬orts to date include the use of
statistical linearization (see, for example, Flower & Mackerdichian 1978), perturba-
tion and functional series (see, for example, Vassilopolos 1967), the Fokker{Planck{
Kolmogorov (FPK) equation (Haddara 1974; Moshchuk et al . 1995a,b), non-Gaussian
moment closure (Haddara & Zhang 1994), and the use of Melnikov functions (Hsieh
et al . 1994; Jiang et al . 1996).

Of these approaches, the use of the FPK di¬usion equation, based on a joint con-
tinuous Markov model for the roll displacement and velocity, is one of the most
attractive since it enables the probability distribution of the response to be deter-
mined. However, the standard theory requires the excitation to be modelled as an
ideal white noise process. This is not a realistic assumption since the spectra of
ocean waves normally have a distinct peak and a limited bandwidth. An additional
complication is that, for an SDOF roll equation of motion, the FPK equation is a
two-dimensional partial di¬erential equation. Analytical solutions to this equation
are not available for the type of nonlinear damping pertinent to ship roll motion and
numerical solutions, while possible, are time consuming to implement.

It has been shown by the ­ rst author (Roberts 1982a) that these di¯ culties can
be overcome by considering the energy envelope of the response E(t) and apply-
ing a stochastic averaging technique, due to Stratonovitch (1963). This approach
enables the two-dimensional FPK equation to be reduced to a one-dimensional FPK
equation for E(t), containing terms which are explicitly related to the spectrum of
the excitation process. This implies that E(t) can be modelled, approximately, as a
one-dimensional continuous Markov process. In cases where a stationary distribution
exists, at least in an approximate sense, the FPK equation can be solved easily to
yield a simple expression for the probability distribution of E(t). Moreover, through a
consideration of a related phase process, it is possible to obtain an expression for the
stationary joint distribution of the roll displacement and roll velocity. These results
have been shown to give a good agreement with simulation results, over a realistic
range of damping levels, and also with experimental results obtained using a scale
model in a wave tank (Roberts & Dacunha 1985). It is also possible to evaluate, from
the FPK equation for E(t), statistics of the ­ rst passage type, such as the mean time
for the energy to reach a critical level (Roberts 1986b). In principal, the probability
of capsize, within a speci­ ed interval of time, can be estimated by this means.

In the original treatment (Roberts 1982a), the reduction to a one-dimensional FPK
equation was achieved through the application of the Stratonovitch{Khasminski the-
orem (see Roberts & Spanos 1986). This required the introduction of an approxima-
tion with respect to a phase process which was not consistent with other approxi-
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Nonlinear ship rolling in random waves 1919

mations inherent within the method. In the ­ rst part of this paper, an alternative
physically based analysis is presented which clari­ es the nature of the approximations
involved and enables the inconsistency in the earlier treatment to be eliminated. The
analysis shows that the expression for the di¬usion coe¯ cient in the Markov model
for E(t), obtained earlier, is correct, but that a modi­ cation to the corresponding
expression for the drift coe¯ cient is necessary. An expression for the stationary dis-
tribution of E(t) is deduced and compared with the well-known result for white
noise excitation. In addition, a method for calculating the mean time to ­ rst passage
failure is summarized.

In the second part of the paper it is shown that the Markov model can be used
for stochastic estimation purposes. For ships at sea the theory given here enables
the roll-response statistics to be predicted from a knowledge of the roll-restoring
moment, the nonlinear damping moment and the spectrum of the roll-excitation
moment. The restoring moment can usually be estimated with reasonable accuracy
using hydrostatic theory, but the damping and excitation are much harder to predict.
Here it is shown that both the damping moment and the excitation spectrum can be
estimated from measurements of the roll response alone, using the Markov model for
E(t) as a basis. A great advantage of the proposed new method over earlier treat-
ments (Roberts et al . 1992, 1994, 1995, 1996; Roberts & Vasta 1998, 2000b; Vasta
& Roberts 1998) is that it is not necessary to assume that the response reaches sta-
tionarity. The estimation method is validated through application to some digitally
simulated data.

2. The equations of motion

It will be assumed here that, at least for the case of beam waves, rolling motion can
be treated as uncoupled from other motions and that the roll angle ¿ is governed by
a di¬erential equation of motion of the following general form:

I �¿ + _¿ C( ¿ ; _¿ ) + K( ¿ ) = M (t): (2.1)

Here, I is the roll inertia (including added mass), _¿ C( ¿ ; _¿ ) is the nonlinear damping
moment, K( ¿ ) is the nonlinear restoring moment and M (t) is the roll-excitation
moment. C( ¿ ; _¿ ) is assumed to be a positive function of ¿ and _¿ , while K( ¿ ) is
taken to be an anti-symmetric function of ¿ . The excitation moment can, at least in
principle, be related to the wave motion, using hydrodynamic theory. For example,
Roberts & Dacunha (1985) used linear wave di¬raction theory, in combination with
Fourier analysis, to generate sample functions of M (t) from corresponding sample
functions of measured wave elevation. The equation of motion can be simpli­ ed by
dividing throughout by I . Thus

�¿ + "2 _¿ h( ¿ ; _¿ ) + g( ¿ ) = "x(t); (2.2)

where "2h = C=I , g = K=I , "x = M=I.
The scaling parameter " is introduced into (2.2) to help clarify the order of mag-

nitude of the damping and excitation terms in the subsequent analysis. It will be
assumed throughout that the damping is small: hence " is small. If the response
reaches stationary conditions, at least in some approximate sense, then the scaling
of the excitation given in (2.2) ensures that its variance remains ­ nite as " ! 0,
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i.e. is of order "0, with respect to " (see Roberts & Spanos 1986). If the excita-
tion is not scaled as indicated above, then the variance of the response will be of
order "¡2, i.e. it will be become in­ nitely large as " ! 0. Thus, in these circum-
stances, there is no loss of generality implied by scaling the excitation in this way.
The scaling simply re®ects the fact that, as the response level builds up, under light
damping conditions, the contribution of the damping and excitation forces becomes
relatively weaker, during a typical cycle in the response, compared with the total
energy (kinetic plus potential) in that cycle.

The excitation x(t) will here be modelled as a stationary random process, with
zero mean and a power spectrum Sx(!) de­ ned by the relation

Sx(!) =
1

2 º

1

¡1
wx( ½ ) cos !½ d ½ ; (2.3)

where

wx( ½ ) = Efx(t)x(t + ½ )g (2.4)

is the covariance function of the excitation and Ef g is the expectation, or ensemble
averaging operator.

The static restoring moment of a ship g( ¿ ) is generally of a `softening’ kind such
that, as the roll angle increases from zero, it initially increases with ¿ , reaches a
maximum value and then falls to zero at some critical angle ¿ ¤ . In these circum-
stances, the roll response cannot be treated as a stationary random process since
sample functions will eventually reach the critical boundary in the phase plane ¿ , _¿ ,
corresponding to ¿ ¤ (see Roberts 1982a). The ship will capsize when this boundary is
crossed. It follows that normal statistical descriptions of the roll response, such as the
standard deviation and the power spectrum, are inappropriate and, instead, one must
consider statistics of the `­ rst passage type’, such as the mean time for the response
to reach the critical boundary (see, for example, Roberts 1986a,b). Normally, this
mean time will be much larger than a typical roll period: in these circumstances, the
response can reach stationarity, in an approximate sense, and the argument given
above, with respect to the relative magnitudes of the damping and excitation terms,
in terms of the scaling parameter ", is valid.

The total energy envelope process E(t) associated with the response is de­ ned by

E(t) = 1
2

_¿ 2 + V ( ¿ ); (2.5)

where

V ( ¿ ) =
¿

0

g( ¹ ) d ¹ : (2.6)

Clearly, 1
2

_¿ 2 represents the kinetic energy of the ship and V ( ¿ ) is the potential energy.
It is possible to rewrite the equation of motion in terms of E(t) and an associated
phase process © de­ ned by the following relationships:

sgn( ¿ ) V ( ¿ ) =
p

E cos © ; (2.7)

_¿ = ¡
p

2E sin © : (2.8)
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The result is two ­ rst-order equations, as follows:

_E
_©

=
¡ "2 ¬ 1

¡ "2 ¬ 2 + ®
+

"­ 1

"­ 2
x(t); (2.9)

where

¬ 1 = 2Eh sin2 © ; (2.10)

¬ 2 = ¡ h sin © cos © ; (2.11)

® =
jg(x)j
V (x)

; (2.12)

­ 1 = ¡
p

2E sin © ; (2.13)

­ 2 = ¡ cos ©p
2E

: (2.14)

3. Markov modelling

If the damping is light, then it is possible to approximate the energy envelope pro-
cess E(t) as a one-dimensional continuous Markov process. In the theory leading
to this approximation, as developed earlier (Roberts 1982a), use was made of the
Stratonovitch{Khasminskii limit theorem (Roberts & Spanos 1986). However, in
order to apply this theorem, it was necessary to make a non-consistent approxi-
mation with respect to the ® term, for which there is no theoretical foundation.

Recently, an alternative approach to the derivation of a Markov model has been
outlined (Roberts & Vasta 2000a), based on physical reasoning, which overcomes
this di¯ culty and leads to a correction to previous results (Roberts 1982a). Here,
this approach is fully developed.

(a) The Markov process approximation

A fundamental assumption, in developing a Markov model, is that it is possible
to ­ nd an interval of time ¢t, such that ¢t > ½ cor, where ½ cor is the correlation
time-scale of the excitation, but small enough that the change of energy ¢E =
E(t + ¢t) ¡ E(t), in that interval, is relatively small. This condition can be met if
the damping is su¯ ciently light: as the bandwidth of the excitation increases, ½ cor

becomes smaller and the restriction on the damping level reduces.
If the coe¯ cients de­ ned by

Hn(E) =
1

¢t
Ef¢Eng; n = 1; 2; : : : ; (3.1)

are such that Hn(E) = 0, for n > 2, and both

m(E) ² H1(E); (3.2)

and

D(E) ² H2(E) (3.3)

approach a limiting value, for small ¢t (subject to ¢t > ½ cor), then E(t) can be
modelled, approximately, as a Markov process (see, for example, Gardiner 1985).

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/
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The coe¯ cients m(E) and D(E) are known, respectively, as the drift and di¬usion
coe¯ cients.

This Markov process is governed by the following stochastic Itô equation:

dE = m dt + D1=2 dW; (3.4)

where W is a unit Wiener (or Brownian) process. The process is also de­ ned by its
transition density function p(E j E0; t), where p(E j E0; t)dE is the probability that
the process lies in the range E to E + dE, at time t, given that it was at E0 at
time t = 0. From (3.4), it follows that p(E j E0; t) is governed by the Fokker{Plank{
Kolmogorov (FPK) equation (Gardiner 1985),

@p

@t
= ¡ @

@E
(mp) +

1

2

@2

@E2
(Dp): (3.5)

(b) Averaging the dissipation terms

If s is some time in the interval t to t + ¢t, then one can write

E(s) = E0 + e(s); (3.6)

© (s) = © 0(s) + ³ (s); (3.7)

where E0, © 0 are the free undamped solutions (" = 0). From (2.9),

_E0 = 0; (3.8)

_© 0 = ® (E0; © 0) ² ® 0; (3.9)

and hence

E0 = const: (3.10)

and

© 0 = ® 0 dt: (3.11)

For the special case of a linear restoring moment, ® 0 is a constant, equal to the
natural undamped frequency of oscillation, and © 0 increases linearly with time.

As a ­ rst step in developing the Markov model, the dissipation terms ¬ 1 and ¬ 2

in (2.6) can be averaged over the period of free undamped oscillation T (E), treating
E as a constant during this period and setting © = © 0. This corresponds to the
well-known Krylov{Bogoliubov averaging method used in deterministic nonlinear
problems (Bogoliubov & Mitropolsky 1961) and is correct to order "2. The equations
of motion then become

_E
_©

=
¡ "2 ¤ 1

¡ "2 ¤ 2 + ®
+

"­ 1

"­ 2
x(t); (3.12)

where

¤ 1(E) =
2E

T (E)
h sin2 © 0 dt; (3.13)

¤ 2(E) = ¡ 1

T (E)
h sin © 0 cos © 0 dt: (3.14)
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In the subsequent analysis, only the ­ rst of these damping functions, ¤ 1(E), is
required. This function can be expressed in terms of the Fourier expansion of sin © 0

as follows:

sin © 0 =

1

n= 1;3;:::

sn sin n!(E)t: (3.15)

Hence

¤ 1(E) =
2E

T (E)

1

n = 1;3;:::

s2
n h sin2 n!(E)t dt: (3.16)

In most cases, the damping function h( ¿ ; _¿ ) can be modelled in a simple linear-in-
the-parameters form. The integral in (3.16) can then be evaluated quite easily. Unless
the nonlinearity with respect to the restoring moment is very severe, the series can
be truncated at n = 1, to a good level of approximation.

In the particular case where h( ¿ ; _¿ ) depends only on the energy level E, i.e.

h( ¿ ; _¿ ) = h(E); (3.17)

then, from (3.16),

¤ 1(E) = h(E)s(E)E º h(E)s2
1E; (3.18)

where

s(E) =

n

n= 1;3;:::

s2
n =

2

T (E)
sin2 © 0(t) dt: (3.19)

For a linear restoring moment, s(E) = 1 and (3.18) thus reduces to

¤ 1(E) = h(E)E:

If the damping is of the linear viscous form, such that h( ¿ ; _¿ ) = ­ , where ­ is the
damping coe¯ cient, then (3.18) gives ¤ 1(E) = ­ s(E)E: this reduces to ¤ 1(E) = ­ E
if the restoring force is also linear.

The period of free undamped oscillation is given by

T (E) =
2 º

!(E)
= 2

p
2

b

0

d ¹

[E ¡ V ( ¹ )]
; (3.20)

where b is such that V (b) = E and !(E) is the corresponding frequency.

(c) Evaluation of the drift coe± cient

On integrating the ­ rst row of (3.12) over the interval t to t + ¢t, and using the
de­ nition of the drift coe¯ cient given by (3.1) and (3.2), one obtains the expression

m(E) = ¡ "2 ¤ 1(E) +
"

¢t

t + ¢ t

t

Ef­ 1xg du: (3.21)

The integral term is non-zero, due to the correlation between ­ 1 and x.
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To evaluate the integral, ­ 1 can be expanded about its deterministic evolution,
corresponding to " = 0, denoted ­ 1;0 = ­ (E0; © 0). Thus, for t < u < t + ¢t,

­ 1(u) = ­ 1;0(u) +
@­ 1

@E

u

0

e(u) +
@­ 1

@©

u

0

³ (u): (3.22)

Here, terms of higher order than unity, with respect to e and ³ , have been neglected.
The expansion is thus correct to order ". On substituting this expansion into (3.21),
and using the fact that the contribution of the ­ rst term is zero (since Efx(t)g = 0),
one obtains

m(E) = ¡ "2 ¤ 1(E) + I1 + I2; (3.23)

where

I1 =
"

¢t

t + ¢ t

t

@­ 1

@E

u

0

Efe(u)x(u)g du; (3.24)

I2 =
"

¢t

t + ¢ t

t

@­ 1

@©

u

0

Ef ³ (u)x(u)g du: (3.25)

(i) Evaluation of I1

To evaluate the integral I1, an expression for e(u) can be obtained by integrating
the energy equation (­ rst row of (3.12)). Correct to order ", one has

e(u) = "
u

t

­ 1;0(v)x(v) dv: (3.26)

Hence, on combining (3.24) and (3.26), one has

I1 =
"2

¢t

t + ¢ t

t

u

t

@­ 1

@E

u

0

­ 1;0(v)Efx(u)x(v)g dv du: (3.27)

Using the de­ nition of the correlation function for x(t) given by (2.4), together with
the explicit expression for ­ 1 given by (2.13), equation (3.27) becomes

I1 =
"2

¢t

t + ¢ t

t

u

t

sin © 0(u) sin © 0(v)wx(u ¡ v) dv du: (3.28)

Combining (3.15) and (3.28), one obtains

I1 = 1
2
"2 º

1

n= 1;3;:::

s2
nSx[n!(E)]: (3.29)

(ii) Evaluation of I2

To evaluate the integral I2, it is necessary to obtain an expression for ³ . As a
­ rst step, the term ® (see equation (2.12)) can be expanded about its value when
excitation and damping are absent, in a similar way to the method used for ­ 1. Thus

® (t) = ® 1;0(t) + ® E
0 e(t) + ® ©

0 ³ (t); (3.30)
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where

® E
0 (t) =

@®

@E

t

0

; (3.31)

® ©
0 (t) =

@®

@ ©

t

0

: (3.32)

Again, this expansion is correct to order ". On substituting this expansion into the
phase equation (second row of (3.12)), one obtains the following ­ rst-order di¬erential
equation for ³ :

_³ ¡ ® ©
0 (t) ³ = ¡ "2 ¤ 1(E) + "­ 2x(t) + ® E

0 e(t): (3.33)

An integration of this equation yields, correct to order ",

³ (u) = "
u

0

­ 2;0(v)h(u; v) dv + "
u

t

v

t

® E
0 (v)h(u; v)­ 1;0( ¹ )x( ¹ ) d ¹ dv: (3.34)

Here, h(u; v) is the impulse response function for di¬erential equation and is given
by

h(u; v) =
g(v)

g(u)
; (3.35)

where

g(t) = exp ¡ ® ©
0 (u) du : (3.36)

On combining (3.34) and (3.35) and substituting the resulting expression for ³
into (3.25), one obtains

I2 = J1 + J2; (3.37)

where

J1 =
"2

¢t

t + ¢ t

t

u

t

F (u)G(v)w(u ¡ v) dv du; (3.38)

J2 =
2"2E

¢t

t + ¢ t

t

u

t

v

t

F (u) sin © 0( ¹ )µ(v)wx(u ¡ ¹ ) d ¹ dv du (3.39)

and

F (t) =
cos © 0(t)

g(t)
; (3.40)

G(t) = cos © 0(t)g(t); (3.41)

µ(t) = ® E
0 (t)g(t): (3.42)

The integral J1 can be simpli­ ed by expanding F (t) and G(t) as Fourier series, as
follows:

F (u) =

1

n= 1;3;:::

cb
n cos[n!(E)t]; (3.43)

G(u) =

1

n= 1;3;:::

ct
n cos[n!(E)t]: (3.44)
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Substituting these expansions into (3.38), one ­ nds that

J1 = 1
2
"2 º

1

n= 1;3;:::

ct
ncb

nSx[n!(E)]: (3.45)

Using the Fourier expansions given by (3.15) and (3.44), together with the expression
for h(u; v), the integral J2 de­ ned by (3.39) can be expressed as follows:

J2 =
"2E

¢t

1

n = 1

1

m = 1

(Anm + Bnm); (3.46)

where

Anm = cb
nsm

1

¡1
Sx(!) d!

<
sin[(nu + m¹ )!(E)]µ(v) cos !(u ¡ ¹ ) d ¹ dv du;

(3.47)

Bnm = cb
nsm

1

¡1
Sx(!) d!

<
sin[(nu ¡ m¹ )!(E)]µ(v) cos !(u ¡ ¹ ) d ¹ dv du:

(3.48)

Here, < is the integration space de­ ned by (3.39) and the relationship between the
correlation function of the power spectrum of the excitation process has been used.
As the integration volume, controlled by ¢t, increases, the oscillatory nature of the
integrands in (3.47) and (3.48), with respect to u, ¹ and v, is such that Anm and
Bnm become negligibly small for all n, m.

(iii) Complete results

On collecting results, the following expression for the drift coe¯ cient, correct to
order "2, is obtained:

m(E) = ¡ d(E) + 1
2
º

1

n= 1;3;:::

(s2
n + ct

ncb
n)Sy [n!(E)]; (3.49)

where d(E) is the average of the actual damping moment and y(t) = "x(t) is the
actual excitation process. Thus

d(E) = "2 ¤ 1(E); (3.50)

Sy(!) = "2Sx(!): (3.51)

In the analysis given earlier (Roberts 1982a), the terms ® E
0 and ® ©

0 were neglected.
Then g(t) = 1 and ct

n = cb
n = cn, where

cos © (t)0 =

1

n = 1;3;:::

cn cos[n!(E)t]: (3.52)

A parametric study by the authors, for the case of a Du¯ ng oscillator, has revealed
that the error involved in using c2

n in place of ct
ncb

n is usually small (Roberts & Vasta
2000a).

In nearly all cases, the ­ rst term in the Fourier expansion is dominant. One can
then, to a very good approximation, write

m(E) = ¡ d(E) + 1
2
º (s2

1 + ct
1cb

1)Sy[n!(E)]: (3.53)
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Nonlinear ship rolling in random waves 1927

(iv) White noise excitation

In the special case where the excitation can be modelled as a white noise, we have

wy( ½ ) = Iy ¯ ( ½ ); (3.54)

Sy(!) =
Iy

2 º
² Sy0; (3.55)

then (3.49) reduces to

m(E) = ¡ d(E) + 1
2
º Sy0

1

n= 1;3;:::

(s2
n + c2

n) = d(E) + º Sy0: (3.56)

This result was obtained earlier by Stratonovitch (1963), using a di¬erent argument.
It is interesting to note that, in this case, the second term in this expression is related
to the mean rate of energy fed into the system (Roberts 1983), which is independent
of the form of the nonlinear sti¬ness.

(d ) Evaluation of the di® usion coe± cient

The di¬usion coe¯ cient is much easier to calculate than the drift coe¯ cient.
From (3.12), one ­ nds immediately that, correct to order "2,

D(E) =
"2

¢t

t + ¢ t

t

t + ¢ t

t

­ 1;0(u)­ 1;0(v)w(u ¡ v) du dv

=
"22E

¢t

t + ¢ t

t

t + ¢ t

t

sin © 0(u) sin © 0(v)w(u ¡ v) du dv: (3.57)

On averaging over time, and using the Fourier series expansion of sin © 0 again, it is
found that

D(E) = 2 º E

1

n = 1;3;:::

s2
nSy [n!(E)]: (3.58)

Again, in nearly all cases the ­ rst term in the Fourier expansion is dominant. Then,
to a very good approximation, one can write

D(E) = 2 º Es2
1Sy [!(E)]: (3.59)

(i) White noise excitation

In the particular case of white noise excitation, equation (3.59) reduces to

D(E) = 2 º Sy0Es(E): (3.60)

Again, this result was obtained earlier by Stratonovitch (1963).

4. Predicting the response

(a) Stationary response

The probability density function for the stationary energy envelope response p(E)
can be found, when it exists, by solving (3.5) with @p=@t = 0. As pointed out earlier,
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a stationary response is not achievable if the restoring force is of the softening kind,
but will exist, in an approximate sense, if the mean time to capsize is very long.
In these circumstances, it is reasonable to model the restoring force in terms of a
non-softening characteristic, for small to moderate roll angles, and to consider the
stationary distribution of the response.

Using an argument similar to that given by Krenk & Roberts (1999), p(E) can be
written as

p(E) =
CT (E)

º S ¤ (E)
exp ¡

E

0

h ¤ ( ¹ )

º S ¤ ( ¹ )
d ¹ ; (4.1)

where C is a normalization constant and S ¤ (E) is an `e¬ective spectral density’,
de­ ned by

S ¤ (E) =

1

n= 1;3;:::

s2
n

s(E)
Sy[n!(E)]: (4.2)

Also,

h ¤ (E) = heq (E) +
º

s(E)E

1

n= 1;3;:::

s2
n

s(E)
¡ 1

2
(s2

n + ct
ncb

n) Sy[n!(E)]; (4.3)

where heq (E) is an `e¬ective damping function’, de­ ned by

heq =
d(E)

s(E)E
: (4.4)

By referring to (3.18), it can be seen that heq (E) = "2h( ¿ ; _¿ ) in the case where the
latter depends only on E. These expressions reduce to the result given by Krenk &
Roberts (1999) if ct

n = cb
n = cn.

Moreover, using a similarity argument (Krenk & Roberts 1999), one obtains

p( ¿ ; _¿ ) =
p(E)

T (E)
: (4.5)

In the particular case of white noise excitation, h ¤ = heq and S ¤ = S0. Hence (4.1)
reduces to

p(E) =
CT (E)

º Sy0

exp ¡
E

0

heq ( ¹ )

º Sy0

d ¹ : (4.6)

This result coincides with the result found earlier by Stratonovitch (1963), using a
generalized form of stochastic averaging. When the damping is of the form given
by (3.17), then the result is exact (see Caughey 1971).

Some comparisons between simulation estimates of p(E) and corresponding theo-
retical estimates, derived from the present theory, for the case of a Du¯ ng oscillator
with linear damping, have been presented recently (Roberts & Vasta 2000a). These
results show that the correction to the original theory, given here, is small and likely
to be negligible in most cases.
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(b) First passage statistics

A great advantage of the Markov modelling approach is that it allows one to obtain
response statistics of the ­ rst passage type.

The ­ rst passage time for E(t) is simply the time T (E0) taken for a sample function
of the process, starting at E0 at time t = 0, to reach some critical level, h. The density
function of this time is denoted here by p(E0; t). For capsize, h = V ( ¿ ¤ ).

For long times to failure, the ­ rst passage density function takes the asymptotic
form (Roberts 1986a)

p(E0; t) = ¶ 1 exp( ¡ ¶ 1t); (4.7)

where ¶ 1 is the ­ rst eigenvalue of the adjoint of the FPK equation for E(t) (see
equation (3.5)). If p(E0; t) obeys this asymptotic form, then

M1(E0) =
1

0

¶ 1 exp( ¡ ¶ 1t)t dt =
1

¶ 1

; (4.8)

where M1 is the ­ rst moment, or mean, of the ­ rst passage time. It follows that
a knowledge of M1 alone su¯ ces to estimate the ­ rst passage density function and
hence the probability that E(t) stays within prescribed limits, within a ­ xed interval
of time.

An ordinary di¬erential equation for M1 can be obtained from the adjoint FPK
equation for E(t) (see Roberts 1986a,b). Thus

¡ 1 = m(E0)
dM1

dE0

+ 1
2
D(E0)

d2M1

dE2
0

: (4.9)

Appropriate boundary conditions have been given by Roberts (1986b). An analytic
solution to this equation is generally di¯ cult to ­ nd but numerical solutions are
easily obtainable.

A comparison between theoretical estimates of ·T ² M (0) and corresponding sim-
ulation results has been discussed by Roberts (1986b). Here, an SDOF system with
linear-plus-quadratic damping and a softening restoring characteristic (linear-minus-
cubic), driven by non-white excitation, was considered and estimates of ·T were plot-
ted against a parameter de­ ning the bandwidth of the excitation. It was observed
that the simulation estimates approach the theoretical estimates as the bandwidth
of the excitation increases but that this approach is slow. At bandwidths typical of
those encountered in practical applications the theory underestimates ·T quite signif-
icantly, i.e. the theoretical estimate is conservative and thus may be useful for design
purposes. The discrepancy for small excitation bandwidths is due to the fact that
sample functions of the actual E(t) process are smoother, in these circumstances,
than those generated by the corresponding Markov model. The latter are highly
irregular, on a microscopic scale, and the mean time to failure is very sensitive to
small-scale irregularities.

5. Stochastic system identi¯cation

The theory given earlier in this paper can also be used for stochastic estimation
purposes. It is very di¯ cult to predict the damping moment experienced by a ship
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at sea by theoretical methods based on hydrodynamics, due to the complex three-
dimensional and time-dependent nature of the ®ow involved. For similar reasons,
the wave excitation moment is very di¯ cult to relate to wave motion. However, at
sea, measurements of the variation of the roll angle with time can be obtained fairly
readily. It is therefore natural to enquire if the damping and excitation moments can
be estimated from a time history of the roll angle alone. To achieve this, it is, of
course, necessary to model the excitation moment in some way. If the excitation is
unmeasurable, then it can be treated as a stationary stochastic process. One is then
faced with a stochastic identi­ cation problem, which can be stated as follows: from a
single measured time history of the roll angle ¿ (ti) ² ¿ (i¯ t) (i = 1; 2; : : : ; N), where
¯ t is the sampling interval, together with a stationary stochastic process model of the
excitation, how can one generate estimates of (a) the damping moment and (b) the
power spectrum of the excitation?

Some progress towards solving this problem has already been made (Roberts et
al . 1992, 1994, 1995, 1996; Roberts & Vasta 1998, 2000b; Vasta & Roberts 1998).
However, these studies su¬er from two basic limitations. Firstly, the excitation was
assumed, a priori, to have a speci­ c parametric form (usually white noise): estimation
of the excitation thus consisted of determining the parameters de­ ning this process.
Secondly, to apply the proposed methods, it was necessary to assume that the roll
response could be treated as a stationary stochastic process. As already pointed out,
in the case of ship rolling, the restoring moment is of the softening kind, such that
response stationarity cannot be achieved. Thus the response will eventually reach the
critical angle corresponding to capsize. The mean time to capsize will clearly increase
as the level of excitation reduces, and for su¯ ciently low levels it may be possible to
treat the response as stationary but only in some approximate sense which is di¯ cult
to de­ ne.

In this paper an entirely new method of solving the stochastic estimation problem
is proposed, which overcomes these two limitations. It is based on the theory devel-
oped in x 2 and, in particular, on the approximate theoretical expressions obtained
there for the drift coe¯ cient (see equation (3.53)) and the di¬usion coe¯ cient (see
equation (3.59). Both these coe¯ cients can be estimated directly by suitably pro-
cessing the measured roll-angle data ¿ (ti), using the de­ nitions given by (3.1){(3.2).

(a) Estimation method

As a ­ rst stage, the roll-angle data are converted to energy samples E(ti), using
the de­ nition of E given by (2.5) and (2.6). This is clearly straightforward if the
restoring moment g( ¿ ) is known. However, a method for doing this, which does not
require a knowledge of g( ¿ ), is also available (Roberts et al . 1992). Then an interval
of time, ¢t = m¯ t, is chosen and the increments

¢Ei = E(ti) ¡ E(ti¡m); i = m + 1; : : : ; N; (5.1)

are computed. Following this, the energy range is divided up into a number of con-
tiguous `slots’, each of width ¯ E, such that the jth slot covers the energy range
(j ¡ 1) ¯ E to j¯ E (j = 1; 2; : : : ). Each ¢Ei is assigned to the slot for which

j¯ E < E(ti¡m) < (j + 1) ¯ E:
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Estimates of the drift and di¬usion coe¯ cients can then be generated by averaging
the ¢Ei values and their square, within each slot. Thus

m̂(Ej) =
1

nj¢t
(j¡1) ¯ E<E(ti ¡ m)<j¯ E

¢Ei; (5.2)

D̂(Ej) =
1

nj¢t
(j¡1) ¯ E<E(ti ¡ m)<j¯ E

(¢Ei)
2; (5.3)

where Ej is the mid-value of E in the jth slot and nj is the number of ¢Ei values
obtained for the jth slot.

For identi­ cation purposes, a correspondence between these estimates and the
theoretical values, given by (3.53) and (3.59), is required: this will clearly depend on
the choice of ¢t. If ¢t is too small, then ¢t < ½ cor, contravening one of the basic
assumptions in the theory. On the other hand, if ¢t is too large, then the ¢Ei will
become large, whereas the theory assumes small changes in energy level over the
interval ¢t. For lightly damped systems, at least, one can expect the estimates of
the coe¯ cients, given by (5.2) and (5.3), to be almost independent of ¢t, over a
signi­ cant `stable’ range of ¢t values, and to correspond well with the theoretical
expressions, within this range. The correlation time-scale of the excitation, ½ cor, will
not be known in practice, but one can evaluate the drift and di¬usion coe¯ cients for
a range of ¢t and choose a ¢t value within the stable range.

Using (3.59), it is possible to generate an estimate of the power spectrum of the
excitation process y(t) directly from D̂(Ej). Thus

Ŝy(!j) =
D̂(Ej)

2 º Ejs2
1

; (5.4)

where

!j = !(Ej): (5.5)

It is noted that in order to evaluate s2
1, a knowledge of the restoring characteristic

is required. This can either be calculated from hydrostatics or estimates directly
from the data, using the method described by Roberts et al . (1992). If the restoring
characteristic is linear, or approximately so, over the roll amplitude range covered
by the data, then s2

1 º 1 and a knowledge of the linear sti¬ness coe¯ cient is not
required. In this case, !j = !0, independent of Ej , where !0 is the undamped natural
frequency.

Two aspects of the power spectrum estimate given by (5.4) are worth noting.
Firstly, the estimation of this quantity has been totally uncoupled from the estimation
of the damping moment. In earlier attempts to use a Markov model (Roberts et al .
1992, 1996), based on the probability density of an assumed stationary response
to white noise excitation, only the ratio of the damping moment to the excitation
moment could be determined (this can seen by inspection of (4.6)). Secondly, this
estimate is non-parametric, i.e. it is not necessary to assume a parametric form.

Once Ŝy(!j) is determined, the damping moment can be estimated using (3.53).
Thus

d̂(Ej) = ¡ m̂(Ej) + 1
2
º (s2

1 + ct
1cb

1)Ŝy(!j): (5.6)
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Again, to evaluate the Fourier coe¯ cients in this expression, a knowledge of the
restoring characteristic is needed, in general. However, there are two important spe-
cial cases where this information is not required. Firstly, if the excitation is a white
noise, or approximately so, then, from (3.56),

d̂(Ej) = ¡ m̂(Ej) + º Ŝy0: (5.7)

Secondly, if the restoring characteristic is linear, or approximately so, then (5.6)
reduces to

d̂(Ej) = ¡ m̂(Ej) + º Ŝy(!0): (5.8)

Evidently, in this case, the excitation can be modelled as an equivalent white noise,
with level Sy0 = Sy(!0).

In practice, there will usually be some noise on the response data, arising from
the measuring instrumentation. In the present work, it is assumed that the power
spectrum of such noise is in a frequency range which is much higher than the dynamic
range of the ship roll motion. In these circumstances, it is a simple matter to pre-
process the response data by applying a low-pass digital ­ lter.

The accuracy of the estimates obtained by the proposed estimation scheme will
clearly depend on the record length. As is the usual case in statistical analysis, one
can expect that the variance of the estimates will be inversely proportional to the
square root of the record length.

(b) An example

To illustrate the method, through application to some simulation data, a particular
form of (2.2) is chosen, where

�¿ + A _¿ + B _¿ j _¿ j + k1 ¿ ¡ k2 ¿ 3 = y(t): (5.9)

Thus the damping is assumed to be of the linear-plus-quadratic type. It has been
shown by numerous studies of experimental data (see, for example, Roberts 1985;
Gawthrop et al . 1988; Kountzeris et al . 1990; Roberts et al . 1991) that this is a good
model. The linear-minus-cubic form chosen for the restoring moment is the simplest
model that represents the actual shape of measured restoring moment versus roll-
angle curves.

On non-dimensionalizing time with respect to the linear undamped natural fre-
quency !0 =

p
k1, and the roll angle with respect to the critical angle ¿ ¤ = k1=k2,

equation (5.9) can be recast as

�¿ + a _¿ + b _¿ j _¿ j + ¿ ¡ ¿ 3 = y(t): (5.10)

For the purpose of testing the estimation method, it is not necessary to model the
excitation process in terms of a spectrum with a standard form. It is su¯ cient to use
a model with approximately the right characteristics: in this case, a spectrum with
a single well-de­ ned peak.

The excitation process considered here can be obtained by ­ ltering white noise
n(t) through two identical ­ rst-order linear ­ lters, placed in series. The output ² (t)
is obtained from

_² + ­ ² = ­ ¶ (t); (5.11)

_¶ + ­ ² = ­ n(t): (5.12)
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Figure 1. The correlation function of the excitation.

If two such ­ ltering operations are applied to independent white noises, the resulting
outputs, ² 1(t) and ² 2(t), may be combined to form the input process

y(t) = h[ ² 1(t) cos ! p t + ² 2(t) sin ! p t]: (5.13)

The power spectrum of y(t), so de­ ned, is given by

Sy(!) = k
1

­ 2 + (! ¡ ! p )2

2

+
1

­ 2 + (! + ! p )2

2

; (5.14)

where k is a scaling constant. For small ­ , this spectrum has a single peak in the
neighbourhood of the frequency ! p . The parameter ­ controls the bandwidth of
the excitation while, ! p determines the position of the peak, relative to the linear
undamped natural frequency (! = 1).

It is worth emphasizing that the proposed method is not limited to input spectra
of the kind discussed here, for illustrative purposes. It is applicable to any wave
excitation, provided that this can be modelled as a stationary random process.

To test the theory, sample functions of the roll-angle response were generated.
These were achieved by ­ rst generating two sequences of Gaussian independent
random numbers, using a pseudo-random number generator, to simulate sample
functions of two independent white noise processes. These were then ­ ltered, and
multiplied by sinusoidal functions, according to (5.11){(5.13), to produce a sample
function of the excitation process. Finally, the equation of motion was solved numer-
ically, using the fourth-order Runge{Kutta algorithm, to generate a sample function
of ¿ .

As an initial test, a case where the damping is linear and light (a = 0:01) was
chosen. This is referred to henceforth as case 1. A sample function of ¿ , ¿ (ti), was
computed, where ti = i¯ t, i = 1; 2; : : : ; N , N = 100 000 and ¯ t = 0:05. This gives
a record length of 5000, containing approximately 1000 roll cycles. This is a typi-
cal amount of data that could be collected in practice during a period of time in
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Figure 2. (a) Variation of the slope of the estimated di® usion coe± cient with the interval ¢ t:
case 1. (b) Variation of the estimated di® usion coe± cient with energy level: case 1. (c) Variation
of the estimated drift coe± cient with energy level: case 1. (d ) The histogram for the energy:
case 1.

which wave conditions remain approximately stationary (ca. 3 h). The input spec-
trum parameters were chosen to be ­ = 1 and ! p = 2 and the excitation level was
set so that a sample function of the indicated length could be generated such that
large-amplitude rolling occurred, but without capsize. Figure 1 shows the correlation
function of the excitation process, for the chosen parameters (noting that time here,
and in the following, has been non-dimensionalized).

As pointed out earlier, in applying the proposed estimation technique it is ­ rst
necessary to establish a suitable value for ¢t. This can be achieved by establishing
the range of ¢t over which the estimates of drift and di¬usion coe¯ cients, calculated
according to (5.2) and (5.3), are stable. Pilot studies revealed that, of the two coe¯ -
cients, the di¬usion coe¯ cient was the most sensitive to the choice of ¢t. According
to (3.59), D(E) becomes proportional to E, as E becomes small, since the restoring
moment is nearly linear at low amplitudes. Thus s1 ! 1 and Sy [!(E)] ! Sy(1) as
E ! 0. Thus it is convenient to examine the dependency of the slope D̂(E)=E at
low E values, on the interval ¢t. Figure 2a shows this variation and compares it
with the theoretical value of 2º Sy(1). As expected from the theory, there is a range
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Figure 2. (Cont.) (e) Estimated input spectrum: case 1. (f ) Variation of the undamped natural
frequency with energy level. (g) Variation of the estimated damping function with energy level:
case 1.

of ¢t values (1 < ¢t < 10) over which the slope is reasonably stable: for ¢t < 1, the
slope value drops rapidly, as E reduces, whereas for ¢t > 10, it decays slowly. On
the basis of this result, a value of ¢t of 5 was chosen for calculating the drift and
di¬usion coe¯ cient estimates.

Figure 2b; c shows, respectively, estimates of the di¬usion and drift coe¯ cients.
The corresponding histogram of the energy values is shown in ­ gure 2d. The value of
E corresponding to capsize is 0.25. The histogram indicates that energy values close
to this critical value occur in the data, but that E < 0:15 for most of the roll-response
record. There is considerable scatter in the estimates of the two coe¯ cients, but at
low amplitudes, where there are most data, the agreement between the estimates
and the theory is very good. A high level of scatter must be expected for this case
since, when the damping is light, neighbouring roll-angle values in the time history
are highly correlated and the e¬ective number of independent sample values of the
roll angle is much smaller than the actual number.

Figure 2e shows estimates of the input power spectrum, derived from the esti-
mates of the di¬usion coe¯ cient, according to (5.4). This shows clearly that the
theory correctly accounts for the shape of the input spectrum. As can be seen from a
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Figure 3. (a) Variation of the slope of the estimated di® usion coe± cient with the interval ¢ t:
case 2. (b) Variation of the estimated di® usion coe± cient with energy level: case 2. (c) Variation
of the estimated drift coe± cient with energy level: case 2.

comparison of the energy histogram with a plot of the variation of the free oscillation
frequency !(E), with E (see ­ gure 2f), reliable estimates of the spectrum can only
be achieved over a fairly limited frequency range (say 0:8 < ! < 1).
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Figure 3. (Cont.) (d ) The histogram for the energy: case 2. (e) Estimated input spectrum:
case 2. (f ) Variation of the estimated damping function with energy level: case 2.

Figure 2g shows the variation of the estimated damping function d(E) with energy
level. For comparison purposes, the theoretical variation is also shown, using the true
linear damping value. This is given by, from (3.18),

d(E) = as2
1E: (5.15)
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Also shown is the result of ­ tting (5.15) to the damping function estimates. This
was obtained by ­ nding the value of a which minimizes the mean square di¬erence
between the estimates and the theoretical parametric form. There is a reasonably
good agreement between the ­ tted curve, obtained in this way, and the true damping
function.

The method was also tested on data relating to a higher level of damping (a = 0:1,
b = 0:8), more typical of that encountered in practice (see, for example, Roberts
1985). For these data, referred to here as case 2, the other parameters were identical
to those in case 1. The excitation level was chosen to give a moderate degree of
response (maximum E about 0.01, corresponding to a maximum roll angle of ca. 15¯:
the restoring force was almost linear in this range). Figure 3a shows that, for this
case, the slope of the di¬usion coe¯ cient is stable over a smaller range of ¢t values
than that for case 1. As expected from the theory, the stability range will reduce
as the damping level increases. However, a reasonably stable range is obtained here
(1 < ¢t < 4) and a value of ¢t = 1:25 was chosen to estimate the drift and di¬usion
coe¯ cients.

Figure 3b; c shows, respectively, estimates of the di¬usion and drift coe¯ cients for
this second case. The scatter is now much lower, re®ecting the fact that, with higher
damping levels, the e¬ective number of independent samples increases, for a ­ xed
length of data. There is a reasonably good agreement with the theoretical variations
of these coe¯ cients with energy, and ­ gure 3c shows that the e¬ect of the nonlinear
damping term on the magnitude of the drift coe¯ cient is signi­ cant. An inspection
of the histogram of the energy values (­ gure 3d) shows that nearly all the data lie in
the range 0 < E < 0:01. Also shown in ­ gure 3b is the least-squares ­ t to the data
of the linear variation D(E) = ¬ E, where ¬ is a constant. The close agreement with
the theoretical variation con­ rms that, in this energy range, the restoring moment
is e¬ectively linear and that the approximation D(E) = 2 º Sy(1)E is valid. Thus the
spectrum at ! = 1 can be estimated from

Ŝy(1) =
¬

2º
: (5.16)

Figure 3e shows estimates of the input power spectrum, derived from (5.4) (labelled
`estimated: 1’) and (5.16) (labelled `estimated: 2’). The ­ rst set of estimates is very
scattered, but the single estimate obtained from (5.16) is very close to the true value
of Sy(1).

Finally, ­ gure 3f shows the variation of the estimates of the damping function
d(E) with energy level. These are compared with the theoretical variation, which is
given by (from (3.16), truncating the Fourier expansion at the ­ rst term)

d(E) = as2
1E + 1:20bs2

1E3=2: (5.17)

Once again, the signi­ cant contribution of the nonlinear component of the damping
is evident. The estimates of the damping function were obtained in two ways, both
using (5.6). In the ­ rst way, Ŝy(!j) was obtained from (5.4) (referred to as `estimated:
1’), whereas in the second way the spectral estimate given by (5.16) was used (referred
to as `estimated: 2’). It can be seen that the ­ rst set of estimates has a signi­ cant
error at low values of E, originating from the high relative error of the raw estimates
of D(E) in this range (see ­ gure 3b). In contrast, the second set of estimates are
in good agreement with the theoretical curve, except at the highest energy levels
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where the amount of data is relatively small. Also shown in ­ gure 3f is the result of
­ tting the parametric form given by (5.17) to the second set of estimates: here the
di¬erence was minimized, in a least-squares sense, with respect to a and b. Although
the damping parameters obtained in this way are not accurate, the damping function
so obtained is in reasonable agreement with the true function.

6. Conclusions

The principal conclusions are summarized as follows.

(1) The roll motion of a ship has been treated as uncoupled from other motions,
such that a single-degree-of-freedom nonlinear equation of motion, relating the
roll angle to the roll moment, is appropriate. On this basis, it has been shown
that, for light damping and non-white stochastic excitation, it is possible to
model the energy envelope of the roll response as a one-dimensional continu-
ous Markov process. Explicit expressions have been obtained for the drift and
di¬usion coe¯ cients de­ ning this process.

(2) If the mean time to capsize is very long, such that the response reaches sta-
tionarity in an approximate sense, then simple expressions for the probability
distribution of the roll response have been obtained. Moreover, it has been
shown that estimates of the mean time for the energy envelope to reach a
speci­ ed critical level can be generated.

(3) A new method of estimating the damping and excitation moments has been
proposed, based on estimating the drift and di¬usion coe¯ cients from roll-
response data and using these estimates in conjunction with the theoretical
expressions for these quantities. The method has been validated through an
analysis of some digitally simulated data.
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